If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+36w-63=0
a = 4; b = 36; c = -63;
Δ = b2-4ac
Δ = 362-4·4·(-63)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-48}{2*4}=\frac{-84}{8} =-10+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+48}{2*4}=\frac{12}{8} =1+1/2 $
| 3x+6=x^2+6x+8 | | 4y-2+y+46=6y+50-3y | | 4x+6/3=5x-3 | | 4x/3+2=5x/2-3/2 | | 3x-12+7=5x+4x-17 | | 8+9n-7=9n+43-6n | | x²-8x=9 | | d+26/7=7 | | 8x+7(2-3x)=-6(2x+50 | | m/4+-18=-10 | | (1/2)x+(1/5)=13 | | 23-2q=11 | | r/6+43=51 | | x+5=5x-4 | | 8(d-84)=40 | | 1x=125 | | 9p-29=11+p | | 3x-5*0=9 | | 81y4=(9y)(9y4) | | 3x-5-1=9 | | 15=n/3+12 | | 17=2(m-15) | | 100/x=-4 | | 2(m-15)=143 | | v/3-3.2=-10.7 | | x-91=-15 | | w/5-4=15 | | r/2-6=4 | | 2m-15=143 | | 8x+10=-126 | | 8x+10=-125 | | 7x2+6x+2=0 |